Detalji sa časa

Evo kako moji đaci uče Pitagorinu teoremu! Uz obilje materijala 🙂
Pitagorina teorema

Advertisements

Dokazivanje podudarnosti

Kako bih deci olakšala da shvate redosled koraka u postupku dokazivanja podudarnosti, kao i stavove o podudarnosti sačinila sam sledeću power-point prezentaciju:

DOKAZIVANJE PODUDARNOSTI

Moja idejea je da se ova prezentacija koristi na času tako što se kroz slajdove deca navode da sama zaključuju, da bi se tek nakon toga otvarala i prikazivala animacija na slajdu koja to što su zaključili i pokazuje. Razgovor treba voditi afirmativno kroz pitanja:

Da li nam je teško da zapišemo da su dve duži jednake? Nije teško uočiti jednake uglove, a to su?

Ovakva i slična pitanje treba da stvore naviku zapisivanja koraka u dokazivanju podudarnosti, što je najčešće problem sa kojim se deca susreću. Takođe, navodeći da to nije teško, izbeći ćemo da se deca uplaše kad im se traži da u matematici nešto dokazuju.

Nadam se da će ova prezentacija biti od koristi kolegama, ali i deci koja žele da obnove ovaj deo gradiva.

 

 

VEŽBAJMO ZADATKE KROZ IGRU

Računanje brojevnih izraza ili rešavanja jednačina zahteva dosta vežbanja, pa često dosadi, a znamo koliko je neophodno ovome posvetiti veći broj časova. Zato sam uključila maštu i osmislila ove časove uz neku igru. Ako rešavanje jednačina ili računanje dobije neki cilj, mnogo je lakše istrajati na tom zadatku. Naredni primeri vas mogu inspirisati da i vi sastavite neki zabavan zadatak.

 Dešifrovanje tabele

Moji đaci vole kada se igramo dešifrovanja. Evo kako je to izgledalo kada smo uvežbavali rešavanje jednačina u skupu racionalnih brojeva. Zadatak glasi:
Izračunaj zadate brojevne izraze i reši zadate jednačine. Slovo koje stoji pored jednačine ili izraza odgovara dobijenom rešenju. U tabeli se nalaze rešenja svih zadataka, ali ne u istom poretku kao i zadaci. Kada rešiš zadatak, to rešenje pronađi u tabeli i ispod broja napiši slovo koje se nalazilo uz taj zadatak. Na primer, ako utvrdiš da je rešenje izraza u prvom zadatku 1, u tabeli ispod broja 1 upiši slovo V. Istim brojevima odgovara isto slovo, a različitim – razlličito. Prazna polja su razmaci između reči. Kada popuniš sva polja dobićeš jednu rečenicu.

Na ovom času je došlo do pravog utrkivanja među decom, pa su, čak, krili rešenja jedni od drugih, kako bi bili prvi koji su završili dešifrovanje. Svi koji su ispravno rešili svih 13 zadatak su dobili peticu. Evo kako izgleda jedan takav zadatak:

Dešifrovanje tabele

Slagalice – poslovice

U petom razredu se uče razlomci. To mi je bilo zgodno za korelaciju sa srpskim jezikom, pa smo na jednom od uvodnih časova rešavali sledeće:

Slagalice-poslovice

Ukrštenice

Ponekad je potrebno malo predahnuti, ali se trudim da i to vreme na času bude korisno upotrebljeno. I onda kada izgleda da se igramo, zapravo radimo ozbiljne stvari. U tu svrhu nam mogu poslužiti ukrštenice kroz koje se mogu obnoviti neki važni pojmovi, ali se mogu koristiti i kao korelacija među predmetima. Evo kako sam ja to uradila:

ukrstenica

Lavirint

Inspirisana lavirintima o kojim asam slušala na letnjoj školi matematike u Mađarskoj, sastavila sam zadatak u kome se, rešavajući zadatke u lavirintu, učenik kreće kroz lavirint. Cilj je da stigne do polja na kome piše PETICA. Zadatak sam osmislila tako da učenika istovremeno i uči. Ukoliko da pogrešan odgovor i krene putem kroz lavirint koji ne vodi ka cilju, naići će na polje u kome će saznati ono što je pogršio i na taj način će se vratiti na pravi put. Tema ovog lavirinta su operacije sa stepenima, ali se može iskoristiti, uz promenu pitanja, i za ma koju drugu temu u matematici, ali i u drugim predmetima. Pogledajte kako izgleda moj :

Lavirint

 

 

 

 

Objavljeno na sajtu Visuality and Mathematics

Nakon letnje škole u Mađarskoj, inspirisana idejama i odličnim predavačima, moja nastava matematike je obilovala novim idejam. Čak sedam mojih scenaria za časove matematike i matematičke sekcije su  objavljene na sajtu Visuality and Mathematics:

Characteristics of quadrilaterals, Golden Ratio, Inspired by Pythagoras, Operations with degrees, Rectangular coordinate system, Treasure hunt, Prism.

Zainteresovani ih mogu pročitati na:

http://vismath.ektf.hu/index.php?l=en&m=321

Veoma sam ponosna i na sliku koju su moji đaci izradili u okviru primene Pitagorine teoreme, tako da se srpska ćirilica našla na ovom sajtu.

 

 

 

Podudarnost trouglova

Većina nastavnika koji rade u osnovnoj školi deli mišljenje da je učenicima šestog razreda teško da savladaju podudarnost trouglova, a ni moji đaci nisu bili oduševljeni ovom oblašću. Kako je geometrija pogodna za vizuelizaciju, a u želji da deci pokažem da su ovi pojmovi, zapravo, prirodni i jednostavni, osmislila sam čas na kome se moja uloga predavača svela samo na to da pokažem znak za podudarnost. Naravno, i na ono što sam pripremila kod kuće. Ovaj čas se realizuje kao grupni rad. Grupe su ujednačene po kvalitetu i sadrže po četiri člana. Materijal koji je potreban za ovaj čas je:
• po jedan list sa zadacima za svaku grupu
• koverte sa modelima za 2., 3. i 7. zadatak
Evo kako izgleda materijal koji dobijaju đaci:
[000026]
Na početku časa, a u cilju stvaranja dobre atmosfere i motivacije za rad, grupe se takmiče u rešavalju asocijacije koja je postavljena na tabli.

Zatim započinjemo rad na zadacima. Nakon svakog zadatka grupe iznose zaključke do kojih su došle. Uloga nastavnika na času je samo da odredi vreme potrebno za izradu zadataka. Zadaci glase:
1.Koje duži na slici su jednake? Kako ćeš to utvrditi, ako prilikom merenja ne smeš koristiti lenjir?

Ovo je uvodni zadatak koji navodi na upoređivanje geometrijskih objekata koji su “nepomični“ na papiru i na to da je šestar sprava kojom to upoređivanje možemo najuspešnije izvršiti. Vodimo kratak razgovor o tome šta je preciznije: da premerimo lenjirom ili šestarom. Podsetimo se da se u geometriji za jednake elemente kaže da su podudarni. Zatim im postavim pitanje: “Hajde sada da vidimo ko u grupi ima najdužu olovku?“ Na ovaj način se polako približavamo izometrijskim transformacijama: rotaciji i translaciji, koje će nam biti potrebne za utvrđivanje podudarnosti. Ovo pitanje treba da ih navede da na sličan način to učine u sledećem zadatku.
2.Među datim figurama pronađi podudarne. Kako ćeš proveriti njihovu podudarnost?
[000028]
Sadržaj koverte za drugi zadatak

Uzimajući modele u ruke, đaci su brzo došli do zaključka da su figure podudarne ako se pomeranjem mogu dovesti do poklapanja. Svaka grupa je iznela svoje zaključke, pokazujući figure za koje su utvrdili da su podudarne.
3.Među datim trouglovima pronađi podudarne. Posmatraj te podudarne trouglove. Šta primećuješ?
[000031]
Sadržaj koverte za treći zadatak
Preklapajući trouglove, kako bi ih uporedili, učenici su samostalno došli do zaključka da su trouglovi podudarni ako se poklapaju i da u tom slučaju imaju jednake uglove i stranice. Nakon toga pišemo naslov na tabli i u sveskama i prelazimo na četvrti zadatak.
Interesantno je da ovde napomenem da je dečje razmišljanje ponekad neobično. Pustivši ih da sami zaključuju, postavili su jedni drugima pitanje o kome ja nisam razmišljala: “Kako su ti ta dva trougla podudarna, kad je jedan žut, a drugi crven?“ Sami su raspravljali i uskoro zaključili da je važan oblik, a ne boja.
4.Uzmi bilo koji od trouglova u zadatku 3., pa ga prekopiraj dva puta u svesku. Obeleži nacrtane trouglove. Da li si na taj način nacrtao podudarne trouglove?
5.Zapiši elemente koji su u tim trouglovima jednaki.
Učenici samostalno obeležavaju trouglove i zapisuju jednakost stranica i uglova, nakon čega izveštavaju šta su zaključili Neko od učenika to isto nacrta i na tabli. Konačno i nastavnik dobija reč, pokazuje znak za podudarnost i zapisuje na tabli podudarnost trouglova.
6.Dogovorite se u gupi kako bi ste definisali podudarne trouglove. Ja ću započeti rečenicu: “Dva trougla su podudarna ako…“, a vi je završite.
U svim odeljenjima gde sam realizovala ovaj čas, đaci su samostalno došli do definicije. Iskoristila sam taj trenutak da “podgrejem“ atmosferu čestitajući im na izvedenim zaključcima. Počastila sam ih aplauzom i istakla da su ovo uradili kao pravi naučnici i da, iako nije lako sastaviti definiciju, oni su u tome uspeli! Bili su oduševljeni!
7.Podelite se u svakoj grupi u parove a zatim pročitajte zadatak. Kada rešite zadatak, izvestićete ostale grupe o zaključcima do kojih ste došli.
Oba para imaju zadatak da izračunaju obim trougla. Jedan par ima sve neophodne podatke: zadate su sve stranice, dok drugi par ima poznatu samo jednu stranicu. U tekstu zadatka za drugi par stoji da mogu potražiti pomoć prvog para ako ne mogu da reše zadatak. Očekuje se da će poslušati to uputstvo. Kada pogledaju šta radi prvi par, uočavaju da njihov trougao ima sve elemente, ali, takođe, i da je podudaran trouglu koji oni imaju. Usled toga, ta dva trougla imaju i jednake stranice, pa su im i obimi jednaki. Ovaj zadatak je, zapravo, odgovor na pitanje: zašto učimo podudarnost. O tome smo diskutovali nakon izveštaja grupa.
[000033]

Pre nego što se pređe na evaluaciju časa (8. zadatak), obavezno ih pohvalim i odam priznanje da su na ovom času bili “pravi matematičari“ koji su sami smislili definiciju i uspešno se snašli u poslednjem zadatku u kome je trebalo da primene naučeno.
8.U grupi razmenite utiske o tome šta ste danas naučili i pripremite izveštaje za ostale grupe. Nakon toga, iznesite utiske o ovom času.
Uvek sam dobijala odgovor da je ovo bio “mnogo zanimljiv čas“ i da bi bilo dobro da bude više ovakvih časova. Iskoristila sam priliku i da ih pitam da li misle da je podudarnost teška? Povikali su u glas: “Neeeee, ovo je mnogo prosto!“

Učenje putem istraživanja

U šestom razredu sam održala zanimljiv čas na temu Pravougaonik. Smatrajući da je to delimično poznata lekcija, prepustila sam deci da sami istraže osobine pravougaonika. Podelila sam ih u grupe istraživača i jednu grupu koju sam nazvala ekspertski tim i u kojoj su bili dobri matematičari. Pošto je prethodna lekcija bila: Svojstva paralelograma, svaka grupa je dobila model pravougaonika i paralelograma (bolje da imamo modele, nego da zamišljamo) i kartice na kojima je pisalo koje osobine pravougaonika treba da ispitaju. Sve smo zamislili kao igru u kojoj su učenici detektivi, a „osumnjičeni“ je pravougaonik. Kada istraže sve neophodno, karticu nose na proveru ekspertskom timu koji treba da hipoteze potvrde dokazom. Materijal koji se koristi na času:

Radni listovi za istraživače:
Istračivači (grupe A, B, V, G)
Dobili ste modele dva četvorougla (pravougaonik i paralelogram, jer treba da uspostave analogiju sa prethodnom lekcijom, prim. aut.). Da li znate kako se oni zovu?

Osumnjičeni: PRAVOUGAONIK
Zadatak: Utvrditi u kakvoj je vezi osumnjičeni sa paralelogramom. Da li su u srodstvu?
Posmatrajte ih pažljivo. Kako se definiše paralelogram? Pokušajte da sastavite definiciju pravougaonika. Kada ste postigli dogovor u grupi, popunite i odnesite prvu karticu ekspertskoj grupi (za sve grupe).

Posmatrajte stranice pravougaonika i paralelograma.
Stranice pravougaonika su:
1.____________________________
2.____________________________
Popunite drugu karticu i odnesite ekspertskoj grupi ( grupa A).

Posmatrajte uglove paralelograma i pravougaonika. Zapišite zaključak:
Uglovi paralelograma su:
1.susedni su____________________________
2.naspramni su____________________________
Popunite drugu karticu i odnesite ekspertskoj grupi ( grupa B).

Posmatrajte dijagonale pravougaonika i paralelograma. Zapišite zaključak Dijagonale pravougaonika su:
1._________________________
2._________________________
Popunite drugu karticu i odnesite ekspertskoj grupi ( grupa V).

Na osnovu svih detektivskih provera, zaključili smo da je pravougaonik od paralelograma “nasledio“ sledeće osobine:
1. Naspramne stranice su:___________________ i _______________________.
2.Naspramni uglovi su _________________
3.Susedni uglovi su____________________
4.Dijagonale se ____________________ i _____________________________.
Popunite drugu karticu i odnesite ekspertskoj grupi ( grupa G).
Zaključak: Osumnjičeni pravougaonik jeste/nije direktan potomak paralelograma (zaokruži tačan odgovor).
Osobine koje je sam stekao, tj. one koje ne postoje kod paralelograma su:
_________________________________________________________________.
Nakon potvrde ekspertske grupe da je sve navedeno tačno, unesite zaključke u svoje sveske, a za domaći zadatak i u skicen-blokove.

Radni list za ekspertsku grupu:
Zajednički, u grupi, rešavajte navedene zadatke.
U toku rada obratite pažnju na kartice koje će vam donositi istraživači. One vam mogu biti putokazi za vaš rad, ali ne znači da će sve biti ispravne. Na kraju rada ćete objediniti njihove odgovore i o tome dati izveštaj.

1.Pažljivo posmatrajte pravougaonik i paralelogram. Kako bi ste sastavili definiciju pravougaonika?
2.Uočite stranice pravougaonika. Šta zaključujete? Dokažite.
3.Posmatrajte uglove pravougaonika. Šta zaključujete? Dokažite.
4.Posmatrajte dijagonale pravougaonika i paralelograma. Šta se može reći o dijagonalama pravougaonika? Dokažite.
5.Da li postoji tačka u pravougaoniku koja je podjednako udaljena od sva četiri temena? Da li se oko pravougaonika može opisati krug?
6.Da li postoji tačka u pravougaoniku koja je podjednako udaljena od sve četiri stranice? Da li se u pravougaonik može upisati krug?
7.Da li je pravougaonik osnosimetrična figura? Koliko osa simetrije ima?

Sačinite izveštaj o rezultatima vašeg istraživanja. U izveštaju treba da stoji:
 Definicija pravougaonika – vaša i kako su to uradile grupe
 Zaključci o stranicama pravougaonika sa dokazima
 Zaključci o uglovima pravougaonika sa dokazima
 Zaključci o dijagonalama pravougaonika sa dokazima
 Može li sa opisati ili upisati krug?
 Osna simetričnost pravougaonika.

Ishodi: Atmosfera na času je bila odlična. Svi učenici, bez izuzetka, su veoma ozbiljno shvatili svoje zadatke, te nije izostao „A-ha“ efekat na kraju časa.DSCN9167  DSCN9168 DSCN9171 DSCN9178 DSCN9179 DSCN9192 DSCN9194DSCN9209

DSCN9210

Ekspert